Yu. A. Kirichenko, L. A. Slobozhanin,
and N. S. Shcherbakova

The size of a conical cavity characterizing the start of boiling is estimated on the basis of analyzing the stability of a nucleus of vapor in such a cavity.

A rather important problem in physics of boiling processes is the growth and the breakaway size of bubbles forming on the heater during boiling. This problem is directly involved with determining the dimensions of microcavities, which constitute active centers of boiling.

Usually there appear various kinds of nonuniformities on the heating surface, For the sake of simplicity, we will assume that the surface is "covered" with conical cavities, where half the vertex angle ψ ranges from 0 to 90° and some mean depth h depends on the class of surface finish.

It is well known that the ability of a cavity to reliably retain gas which serves as nucleus of the vaporous phase is the indicator of such a cavity's activity. For cavity to be an active center requires, furthermore, a certain temperature head $\Delta T=T_{L}-T_{S}$. The relation between ΔT and the radius r_{c} of the cavity rim is [1]

$$
\begin{equation*}
r_{c}=2 \sigma T_{\mathrm{s}} /\left(L \rho^{\prime \prime} \Delta T\right) \tag{1}
\end{equation*}
$$

It must be noted here that estimating r_{c} according to relation (1) is difficult, because of the difficulty of determining T_{L}. For this reason, one usually deals with the temperature T_{H} on the heater rather than with the temperature T_{L}. Experiments [1] have confirmed the validity of such a substitution under conditions of uniform heating of the liquid and its temperature being equal to that of the heater. Under real conditions of heat supply from the heater surface to the liquid, however, the temperature difference $\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{s}}$ measured in an experiment differs from the quantity $T_{L}-T_{S}$ calculated according to relation (1) with r_{c} known (in [1], these two temperature differences were 11.1 and $1.7^{\circ} \mathrm{C}$, respectively). This is attributable to the existence of a boundary layer of liquid, in which the temperature drops from T_{H} at the heater to T_{s} at some distance characterizing the thickness of this boundary layer. Taking the thickness of this boundary layer into account [2] makes it possible to correctly determine r_{c} from the measured T_{H} temperature. One can apparently assume that in the first approximation r_{C} and $\delta \mathrm{T}=\mathrm{T}_{\mathrm{H}} \mathrm{T}_{s}$ are related through the equality

$$
\begin{equation*}
r_{c}=2 B \sigma T_{s} /\left(L p^{\prime \prime} \delta T\right) \tag{2}
\end{equation*}
$$

with the empirical factor B having any value from 10 to 20 [3].
We will also note that on the left-hand side of equality (1) there should appear $r_{\text {omin }}$, the smallest radius of curvature at the vertex of a bubble which the latter has during its growth. It has been assumed in [1] that the surface of a bubble constitutes a part of a sphere with a radius which varies in time and with a wetting angle θ of 90°, the radius of the sphere becoming minimum when the free surface of the bubble rests on the rim of the cavity so as to form a half-sphere, i.e., when $r_{\text {omin }}=r_{c}$.

We will now determine whether the last equality is valid without the assumptions [1] about the sphericity of the free surface and about $\theta=90^{\circ}$. For this purpose we will examine the evolution of the exact shape of a bubble during its slow growth up to breakaway [4-6], beginning from the instant of time when the base of the bubble coincides with the rim of the cavity. We introduce the dimensionless quantity $R_{c}=r_{c} b^{1 / 2}$ with $b=\Delta \rho g / \sigma$. It follows from data on the evolution of the exact shape of a bubble that as soon as $\theta \leqslant 90^{\circ}$ and $R_{C}<0.92$, a bubble resting on the rim of a cavity will intersect a plate at a 90° angle for the first

Physicotechnical Institute of Low Temperatures, Academy of Sciences of the Ukrainian SSR, Kharkov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 1, pp. 80-85, July, 1983. Original article submitted March 26, 1982.

Fig. 1. Schematic diagram of bubble growth in a conical cavity.

Fig. 2. Radius $r_{c}(\mathrm{~mm})$ of active cavity at small wetting angles θ (ang. deg): 1) He ; 2) $\mathrm{H}_{2} \mathrm{O}$; 3) O_{2}; solid lines correspond to Class 7 surface finish (GOST 2789-73), dashed lines correspond to Class 10 surface finish.

Fig. 3. Radius of active cavity in water within $\theta=20-45^{\circ}$ range.
time during its growth. The position of the bubble will then be stable. If $R_{c}<0.82$, its radius of curvature at the vertex will then be the minimum one during its entire growth period. The ratio $r_{c} / r_{\text {omin }}$ is 1.14 for $R_{\mathbf{c}}=0.82$ and, being equal to ($1+\frac{1}{6} R_{c}^{2}$) [7], approaches unity as R_{c} decreases. Considering that $R_{c}<0.82$ for an activevapor nucleatingcenter, one can regard relation (1) as a valid one for $\theta \leqslant 90^{\circ}$.

It follows from relation (1) that boiling will start earlier (at a smaller ΔT) on a larger cavity if the latter is capable of reliably retaining gas. However, this condition is less likely to be satisfied by large cavities. Therefore, determining the size of an active cavity requires knowing the maximum size of a cavity still capable of retaining gas. We will, accordingly, examine the stability of a gaseous bubble in a conical cavity,

A gaseous bubble deforms during its slow growth in a conical cavity so that its wetting angle θ and thus also angle $\alpha=\pi / 2-\psi+\theta$ (Fig. 1) will remain constant. Loss of stability occurs at the instant when an inflection point appears on the generatrix of the free bubble surface (which coincides with the corresponding equilibrium surface) [8].

We will consider only large angles ψ, since profilograms of solid surfaces [9] indicate that depressions are nearly conical with angles $\psi=80-90^{\circ}$. When ψ is large and θ is small, then α is also small. When α is small, then $R\left(\equiv r b^{1 / 2}\right)=R_{*}$ at the inflection point can be calculated from the relation $R_{*}=\frac{1}{4}\left(\frac{3}{2}\right)^{1 / 2} \sin ^{2} \alpha$ [7]. In the stability-wise critical situation the inflection point is the point of contact with the solid surface, so that, letting

TABLE 1. Theoretical and Experimental Values of Breakaway Radii of Bubbles and of Active Cavities during Boiling of Cryogenic Liquids

				$\begin{aligned} & \text { E } \\ & \text { E } \\ & \frac{B}{\otimes} \\ & \times \\ & 0 \\ & 0 \end{aligned}$			E		
$\begin{aligned} & 6 \\ & 60 \\ & 6 \\ & 6 \end{aligned}$	10	2	3,34	0,15	3,22	0,16	0,40	2,34	5,85
		4	2,85	0,15	3,09	0,16	0,24	2,80	11,67
		6	1,76	0,135	2,98	0,15	0,24	2,26	9,42
		8	1,18	0,12	2,97	0,14	0,24	1,64	6,85
	7	2	1,75	0,26	12,45	0,26	0,76	12,10	15,92
		4	1,40	0,21	12,02	0,24	0,49	7,71	15,73
		6	1,23	0,17	11,80	0,235	0,34	4,52	13,35
		8	0,90	0,145	11,59	0,225	0,31	3,13	10,10
$\begin{gathered} 5 \\ 0 \\ 0.0 \\ 0 . \\ \text { 曹 } \\ \ddot{Z} \end{gathered}$	10	2	2,12	0,15	3,15		0,35	2,52	7,2
		3	1,57	0,12	3,07	0,155	0,32	1,45	4,53
		4	2,21	0,10	3,05	0,15	0,17	0,96	5,65
	7	2	1,70	0,135	12,5	0,25	0,44	1,84	4,18

$R_{C}=R_{*}$, one can calculate the critical radius of a conical cavity as $R_{c}=\frac{1}{4}\left(\frac{3}{2}\right)^{1 / 2} \cos ^{2}(\psi-\theta)$.
The dimensionless depth $H=h b^{1 / 2}$ of a critical cavity is determined by the relation $H=$ $R_{c} \cot \psi$. Upon eliminating the quantity ψ from the relations for R_{C} and H, we finally obtain

$$
\begin{equation*}
\left(\frac{H}{R_{c}} \cos \theta+\sin \theta\right)=2\left(\frac{2}{3}\right)^{1 / 4}\left[R_{c}\left(1+\frac{H^{2}}{R_{c}^{2}}\right)\right]^{1 / 2} \tag{3}
\end{equation*}
$$

The graphs in Figs. 2, 3 depict the relation $r_{c}(\theta)$ for helium, oxygen, and water. The surface finish here corresponds to Class 7 and Class 10 , respectively. From the known class of surface finish, i.e., known magnitude of R, one can now determine H for a given liquid and from relation (3) determine the limiting radii of active cavities. An analysis of relation (3) suggests that improvement of the surface finish results in a smaller radius of an active cavity and, consequently, a larger temperature difference ΔT for boiling start (according to relation (1)), which has been confirmed in practice. A decrease of θ and σ or an increase of g has a similar effect on r_{c}. In the latter case (increase of g) r_{c} must decrease by a factor of $\sqrt{\eta}$, where η is the overload factor.

Sizes of bubbles and active cavities in cryogenic liquids are given in Table 1 . The experimental data on breakaway radii r_{d} of bubbles in the given liquids as well as on heater surface finish, pressures, and temperature drops δT have been taken from another study [10]. In two columns following one another are given theoretical values of r_{c} (here $\theta=0^{\circ}$) based on relation (3), and corresponding values of r_{d} based on the relation [5]

$$
\begin{equation*}
r_{d}=1.104 \sqrt[3]{V_{\mathrm{c}} / b} \tag{4}
\end{equation*}
$$

The data in Table 1 indicate that breakaway sizes determined according to the method proposed here represent the upper bound of experimentally determined ones. They are less dependent on the pressure than actually observed in experiments, which can have some effect on the evaluation of dynamic forces. The data in the last three columns can be used for calculating the factor B in expression (2). First $r_{C}=r_{C}^{\prime}$ was calculated according to expression (1), with $\Delta T=\delta T$. Then r_{c}, exp was calculated according to expression (4) and with the use of $r_{d, \exp }$. The factor B was calculated as the ratio $B=r_{c}, \exp / r_{c}^{\prime}$.

We will now examine the law of bubble growth, i.e., the relation $r=\beta \tau^{n}$. When a bubble grows so that gas flows into it at a constant rate, then the bubble volume is a linear function of time [11] and $n=1 / 3$. In real bubbling, however, n has been found to sometimes differ from 1/3, and in the case of boiling - to depend on the pressure [10] with its mean value close to $1 / 2$. This means that gas (vapor) does not flow into a bubble at a constant rate.

Let us examine the bubble growth when the rate of gas flow is controlled by pressure changes in the bubble. Let a bubble form when gas is discharged through a hole of radius r_{c}.

Fig. 4. Dependence of power exponent n in bubble-growth law on radius of active cavity: 1) O_{2} boiling [10];
2) O_{2} boiling at $0.02 \leqslant \eta \leqslant 1$ [3]; 3)
N_{2} boiling [10]; 4) H_{2} boiling [15];
5) $\mathrm{H}_{2} \mathrm{O}$ bubbling; 6) N_{2} bubbling.

The gas leaves a vessel in which a constant pressure p_{1} is maintained. As the bubble slowly grows, the pressure p_{2} inside it will vary according to the relation

$$
\begin{equation*}
p_{2}=\Delta p_{0}+\rho^{\prime} g l+p, \quad l=l_{0}-l_{1}(0) . \tag{5}
\end{equation*}
$$

In this case the flow rate Q of gas discharged through the hole can be estimated on the basis of the relation [12]

$$
\begin{equation*}
Q=\pi r_{c}^{2} \sqrt{2.9 .81 \frac{\kappa}{k-1} \rho_{1} p_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{2 / k}-\left(\frac{p_{2}}{p_{1}}\right)^{k+1 / k}\right]} . \tag{6}
\end{equation*}
$$

Using the results of another study [4], where Δp_{0} and l_{1} have been determined as functions of the volume v for $0.02 \leqslant r_{C} \sqrt{b} \leqslant 0.5$, as well as the relations $\Delta p_{0}(v)$ and $l_{1}(v)$ established for $0.001 \leqslant r_{c} \sqrt{b} \leqslant 0.02$ on the assumption of a spherical bubble, we obtain from relations (5), (6) the relations $Q=f(v)$ with $r_{c}=$ const. Integrating $Q=d v / d \tau$ yields the volume v as a function of time, and, in turn, this relation determines both the exponent n and the coefficient β. The radius of a bubble can then be expressed through its volume v as $r=\sqrt[3]{3 v / 4 \pi}$.

It is to be noted that the trend of the $\Delta p_{0}(v)$ curves depends largely on the value of R_{c} [4]. When R_{c} is small, then the function $\Delta p_{o}(v)$ ascends steeply to some maximum and then descends until stability is lost. As R_{c} increases, the range of increasing Δp_{0} widens, and at some sufficiently large R_{c} the loss of stability occurs before Δp_{0} begins to decrease. Calculations have been made for small R_{c} values ($R_{c} \leqslant 0.5$) in the range of decreasing pressure. It has been found that n depends on R_{C} only (β depends on the other parameters) and lies within $0.4 \leqslant n \leqslant 0.45$ for R_{C} within the $0.001-0.5$ range, becoming larger as R_{C} increases.

Studies of boiling of cryogenic liquids have revealed that an increase of pressure causes a decrease of the exponent n in the quasistatic mode of bubble growth [10]. We will draw an analogy between the growth of a vapor bubble in a cavity of radius r_{c} and the growth of a gas bubble during bubbling at a hole of the same radius. For this we have to evaluate the pressure dependence of R_{C}. Using the pressure dependence of the dimensionless complex $\sigma T_{s} \sqrt{b} / L \rho^{\prime \prime}$, determined by the properties of the liquid and its vapor, and using the pressure dependence of ΔT determined experimentally for oxygen [10], hydrogen [13], and water [14], we obtain from relation (1) the sought relation for R_{c}. This relation is $R_{c} \sim p^{-\gamma}$, with $\gamma=0.97$, 1.41 , and 1.75 for hydrogen, oxygen, and water, respectively. One may propose that this experimentally observed decrease of n with increasing pressure is a consequence of the decrease of the radius R_{c} of an active cavity.

The calculated values of the exponent n were checked experimentally in bubbling tests. The liquids used there were water and liquid nitrogen. The experimental data, along with the results of theoretical calculations, are shown in Fig. 4. On the same diagram are also shown data on boiling of nitrogen and oxygen [10], hydrogen [15], and oxygen at $0.02 \leqslant \eta \leqslant 1$ [3]. These results suggest that the bubble growth during bubbling as well as during boiling in the quasistatic mode is determined by the pressure drop and that the observed pressure dependence of the power exponent n manifests the pressure dependence of the breakaway size of bubbles in the quasistatic mode.

NOTATION

h, H, dimensional and dimensionless depth of a conical cavity; ψ, half the vertex angle
of a conical cavity; r_{c}, R_{c}, dimensional and dimensionless radius of the cavity base; romin, minimum radius of curvature at the cavity vertex; R, dimensionless radius of a bubble; R_{*}, dimensionless critical radius of a conical cavity; r_{d}, breakaway radius of a bubble; $r_{d, e x p}$, experimentally determined breakaway radius of a bubble; r_{c}^{\prime}, radius of a cavity according to relation (1); $r_{c, e x p}$, radius of a cavity determined from r_{d}, exp; T_{L}, mean temperature of the liquid at the bubble surface; T_{S}, saturation temperature; T_{H}, temperature at the heater; $\Delta T=T_{L}-T_{S} ; \delta T=T_{H} T_{S} ; \theta$, wetting angle; σ, coefficient of surface tension; L, latent heat of evaporation; $\rho^{\prime \prime}$, density of the gas (vapor); $\Delta \rho$, difference between density of liquid and density of vapor; ρ_{1}, density of the gas under pressure $p_{1} ; g$, gravitational acceleration; α, angle of inclination (to the horizontal) of a tangent to the bubble surface; η, overload factor; β, B, coefficients; τ, time; n, γ, power exponents; Δp_{0}, magnitude of the Laplace pressure at the tip of a bubble; p, gas pressure over the liquid surface; p_{1}, pressure inside the vessel from gas flows through bubbling hole; p_{2}, pressure in a bubble; l, height of the liquid column above a bubble; Z_{0}, level of the liquid in the vessel; Z_{1}, height of a bubble; v, volume of a bubble; Q, gas flow rate; $k=C_{p} / C_{V}$, adiabatic exponent; C_{p}, isobaric specific heat; C_{V}, isochoric specific heat.

LITERATURE CITED

1. P. Griffiths and D. Wallis, "Role of surface condition in bubble boiling," in: Problems in Physics of Boiling Processes [Russian translation], Mir, Moscow (1964), pp. 99-136.
2. A. O. Siu, "Limiting sizes of cavities at heating surfaces as active vapor nucleation centers," Heat Transfer Ser. C, 84, No. 3, 18-29 (1962).
3. Yu. A. Kirichenko, "Internal boiling characteristics of cryogenic liquids," in: Heat and Mass Transfer during Boiling and Flow of Cryogenic Liquids [in Russian], A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the BSSR, Minsk (1980), pp. 3-32.
4. Yu. A. Kirichenko, L. A. Slobozhanin, and N. S. Shcherbakova, Equilibrium Shapes and Breakaway Sizes of Bubbles in Quasistatic Mode [in Russian], Preprint Physicotechnical Inst. of Low Temp., Acad. Sci. UkrSSR, Kharkov (1977),
5. Yu. A. Kirichenko, L. A. Slobozhanin, and N. S. Shcherbakova, "Breakaway sizes of bubbles quasi-statistically growing on a heater," Inzh.-Fiz. Zh., 30, No. 5, 841-847 (1976).
6. L. A. Slobozhanin and A. D. Tyuptsov, "Evolution and breakaway of slowly growing drops and bubbles," Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 106-113 (1975).
7. A. K. Chesters, "Analytical solution for profile and volume of small drop or bubble symmetric about a vertical axis," J. Fluid Mech., 81, No. 4, 609-624 (1977).
8. V. G. Babskii, N. D. Kopachevskii, A. D. Myshkis, L. A. Slobozhanin, and A. D. Tyuptsov, Hydrodynamics of Weightlessness [in Russian], Nauka, Moscow (1976).
9. V. F. Prisnyakov, Kinetics of Phase Transformations [in Russian], Dnepropetrovsk State Univ. (1980).
10. Yu. A. Kirichenko, V. V. Tsybul'skii, M. L. Dolgoi, K. V. Rusanov, and I. M. Konoval, "Pressure dependence of internal boiling characteristics of nitrogen and oxygen," Inzh.-Fiz. Zh., 28, No. 4, 581-588 (1975).
11. Yu. A. Buevich and V. V. Butkov, "Some laws of liquid dispersion during slow discharge from plane orifice," Teor. Osn. Khim. Tekhno1., 3, No. 4, 576-582 (1969).
12. B. I. Bakhmachevskii, R. G. Zakh, G. P. Lyzo, I. N. Sushkin, and A. A. Shchukin, Heat Engineering [in Russian], Metallurgizdat, Moscow (1963).
13. L. Bewilogua, W. Görner, R. Knöner, and H. Vinzelberg, "Heat transfer in liquid hydrogen," Cryogenics, 14, No. 9, 516-517 (1974).
14. D. A. Labuntsov, B. A. Kol'chugin, V. S. Golovin, et al., "Study of mechanism of bubble boiling in water by method of high-speed photography," in: Heat Transfer in Components of Power Equipment [in Russian], Nauka, Moscow (1966), pp. 156-166.
15. Yu. A. Kirichenko and N. M. Levchenko, "Internal boiling characteristics of hydrogen," Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 103-108 (1976).
